- Rooftop solar panels aren't the only distributed generation technology that could challenge existing utility business models as it grows.
- Some power companies see DG as an opportunity and are entering this segment in ways that could prove challenging to their start-up competitors.
APS is seeking regulatory approval for a program that might be characterized as free rooftop solar. In effect, they would lease approved homeowners' rooftops for $30 per month, in order to host a total of 20 MW of solar panels that would be owned and controlled by APS. The idea has generated some controversy, partly due to the utility's rocky relationship with the solar industry over issues like "net metering".
The plan would enable homeowners who might not otherwise qualify for solar leasing from third parties to have solar installed on their homes, although they would apparently still receive their electricity through the meter from the grid, rather than mainly from the rooftop installation. That's a very different model from most DG approaches, though under current market conditions the net benefit to consumers reportedly would match or exceed that from solar leasing.
Exelon's announcement seems aimed at a different segment of the market, and based on a very different technology. The company would finance the installation of 21 MW of Bloom Energy's fuel cell generators at businesses in several states, including California. Bloom made quite a splash when it introduced its "energy servers", including a popular segment on "60 Minutes" in 2010.
Bloom's devices, which come in models producing either 100 kW or 200 kW, are built around solid oxide fuel cells. At that scale they are too large for individual homes but suitable for many businesses. And because they are modular, they can be combined to meet the energy needs of larger offices or commercial facilities such as data centers. Unlike the fuel cells being deployed in limited numbers of automobiles, they do not require a source of hydrogen gas. Instead they run directly on natural gas from which hydrogen is extracted ("auto-reformed") inside the box.
In that respect, despite their novel technology, Bloom's servers are much closer than rooftop solar to traditional distributed energy, in which a customer owns or leases a small generator to which it supplies fuel. The advantages of Bloom's model are that its servers are designed for highly efficient 24x7 operation, without the expensive energy storage necessary to turn solar into 24x7 power, and with much lower greenhouse gas emissions and local pollution than a diesel generator.
In order to qualify as true zero-emission energy, these installations would need to be connected to a source of biogas, e.g., landfill gas, which effectively creates a closed emissions loop or recycles emissions that would have occurred elsewhere. Even running on ordinary natural gas, the stated emissions of Bloom's energy servers are roughly a third less than the average emissions for US grid electricity, or 20% lower than the average for other natural gas generation. However, their emissions are over 10% higher than the 2012 average for California's grid.
I find it interesting that Exelon, the largest nuclear power operator in the US and owner of a full array of utility-scale gas, coal, hydro, wind and solar power, would make a high-profile investment in a technology that could ultimately slash the demand for its large central power plants. The company has invested in utility-scale solar and wind power, and as the press release indicated, is already involved in "onsite solar, emergency generation and cogeneration" via its Constellation subsidiary. In fact, it has apparently already achieved its goal of eliminating the equivalent of its 2001 carbon footprint. However, the press release hints that something else might have attracted them to this deal.
Consider all the changes in store for the power grid. Baseload coal power is declining due to the combination of economic forces and strong emissions regulations such as the EPA's Clean Power Plan. Even some nuclear power plants, which have been the workhorses of the fleet for the last several decades, are facing premature retirement for non-operational reasons. At the same time, grid operators must integrate steadily growing proportions of intermittent renewable energy (wind and solar), along with increasingly sophisticated tools like demand response and energy storage. If any of this goes wrong, electric reliability will likely suffer.
From that perspective, Exelon's small--for them--step into DG also looks like a bet on the future value of reliability--"non-intermittent...reliable, resilient and distributed power." That's a bet even an old oil trader can understand: Uncertainty creates volatility, and volatility creates opportunities. I will be very interested to see how this turns out.
A different version of this posting was previously published on the website of Pacific Energy Development Corporation.