Showing posts with label peak demand. Show all posts
Showing posts with label peak demand. Show all posts

Friday, September 22, 2017

Could China's EVs Lead to Peak Oil Demand?

  • China's decision on whether and when to ban cars burning gasoline and diesel could alter our view of how far we are from a peak in global oil demand.
  • Even though the likely date of such a peak is highly uncertain, the idea of an impending peak could significantly affect investments and other decisions.
A few months ago the British government made headlines when it announced it would ban new gasoline and diesel cars, starting in 2040. That move, which apparently excludes hybrid cars, is further fallout from the 2015 Dieselgate emissions-cheating scandal.

Now it appears that China is preparing to issue a similar ban. With around 30% of global new-vehicle sales, China could upend the plans and economics of the world's fuel and automobile industries. However, it is less obvious that this would lead directly to the arrival of "peak demand" for oil, an idea that has largely displaced earlier thoughts of Peak Oil related to supply.

Some background is in order, because the two concepts are easy to confuse. Peak Oil, which gained considerable traction with investors and the public in the 2000s, was based on the undoubted fact that the quantity of oil in the earth's crust is finite, at least on a human time-scale. Its proponents argued that we were nearing a geological limit on oil production, and that quite soon oil companies and OPEC nations wouldn't be able to sustain their current production, let alone continue adding to it every year.

The presumption that such a peak was imminent has been pretty clearly refuted by the shale revolution, the first stages of which had already begun when Peak Oil was still fashionable. In fact, humanity has only extracted a small percentage of the world's oil resources. We continue to find both additional resources and new ways to extract more from previously identified resources. Global proved oil reserves--a measure of how much can be produced economically with current technology--have more than doubled since 1980, while production (and consumption) grew by 34%.

For that matter, many of the shale plays that today produce a total of more than 4 million barrels per day had been known for decades. Petroleum engineers just didn't see how to produce oil from them in commercial volumes and at a cost that could compete with other sources like oil fields in deep water.

The first mention I heard of "peak demand" was at an IHS investment conference in 2009, when supply-focused Peak Oil was still king. At the time, it was a novel idea, since only a year earlier, oil prices crested just short of $150 per barrel on the back of surging demand and, to some extent the expectation of Peak Oil, and were only tamed by the unfolding global financial crisis.

Peak demand proposes that consumption of petroleum and its products will reach its maximum extent within a few decades, and thereafter plateau or fall. Crucially, it doesn't depend on a single theory, but on a combination of factors that are easily observable, though still uncertain in their future progression: meaningful improvements in fuel economy, even for large vehicles; policies and regulations to decarbonize the global energy system in response to climate change; an apparent decoupling of GDP and energy consumption; and the rise of partially and fully electrified vehicles.

That brings us back to the implications of a ban on internal combustion engine (ICE) cars in China. Considering that China has accounted for roughly a third of the increase in global oil consumption since 2014, this has to be reckoned as one of the larger uncertainties about future oil demand. Even if we're only talking about the equivalent of a couple of million barrels per day of lost demand growth by 2030, OPEC's ongoing struggle to balance a market that has been oversupplied by less than that amount puts the potential impact for oil investment and economics into sharp relief.

China has every incentive to take this step. Its urban air pollution is on a scale that cities like London and L.A. haven't experienced since the 1950s or 1960s. The country's 2015 pledge to limit greenhouse gas emissions was a centerpiece, and arguably the sine qua non, of the Paris climate agreement. If that weren't enough, the country's dependence on oil imports is exploding in much the same way as the US's did in the early-to-mid 2000s.

Perhaps I'm cynical to think that the last point weighs most heavily on China's policy-makers, just as US energy debates hinged on energy security concerns until quite recently. China's oil demand continues to grow, with over 20 million new cars and trucks reaching its roads each year, and the vast majority of them still needing gasoline or diesel fuel. Meanwhile, its oil production is going sideways, at best, as its mature oil fields decline.

Moreover, despite the country's large unconventional oil resource potential there does not seem to be a shale light at the end of their tunnel, because most of the conditions that supported the shale revolution here don't apply within China's state-dominated system. What it does have is plenty of electricity, and multiple ways to generate a lot more.

Let's concede that China's grid electricity, on which most of those EVs would be running, is among the highest in the world in emissions of both CO2 and local air pollutants. Switching China's new cars from gasoline and diesel to electricity won't constitute a big environmental win, initially or perhaps ever. Even under the relatively generous assumptions used in a recent analysis on Bloomberg, it will take the average EV in China 7 years to repay its extra lifecycle carbon debt, unless the country's electricity mix becomes much greener.

That seems realistic but almost beside the point, if China's main aim is to shore up its worsening energy security. Nor should we ignore the industrial-policy angle in such a move. China set out to dominate the global solar equipment market and can claim success, at least based on sales. If EVs catch on as many expect, the ultimate global market for them would be a sizable multiple of last year's $116 billion figure for global solar investment, only part of which relates to solar cell and module manufacturing, where China leads.

So let's assume 100% EVs is a given in China from some point in the next two decades. Does that spell the end of global oil demand growth in roughly the same timeframe? A number of recent forecasts, including those from Shell and Statoil, reached that conclusion even before the news about China's future car market.

It's not hard to envision this point of view solidifying into conventional wisdom, with interesting implications. Among other things, it could result in further cuts to investment in oil exploration and production that various experts including the International Energy Agency already worry could lead to another big oil price spike--well before EVs take off in a big way. It could also reduce R&D and investment in improvements to the conventional cars that will account for the large majority of car fleets and new car sales for some time to come, with adverse consequences for emissions.

When I consider these forecasts I'm struck by how early we are in this particular transition. Global EV sales are still only around 1% of global car sales, and petroleum products account for all but a small sliver of the global transportation energy market. As fellow energy blogger Robert Rapier recently noted on Forbes, "China is a long way from reining in its oil consumption growth."

Meanwhile, the nascent competition between petroleum liquids and electricity in transportation will occur against the backdrop of a much more complex reshuffling of the entire global energy mix. The current stage of that larger transition involves the rejection of coal and its replacement by natural gas and intermittent renewable energy: wind and solar electricity.

An excellent article by John Kemp in Reuters last week placed the shift away from coal in the context of a long sequence of historical energy transitions. As he noted, "Each step in the grand energy transition has seen the dominant fuel replaced by one that is more convenient and useful." Although there are other, compelling rationales for a move in the direction of electric vehicles backed by wind and solar power, it is extremely difficult to see that combination today in the terms Mr. Kemp used.

Pairing EVs with vehicle autonomy might create a product that is indeed more convenient and useful than current ICE cars with their effectively unlimited range and short refueling times. Perhaps it will require packaging self-driving EVs into mobility-on-demand services to beat that standard. It remains to be seen whether such a package would be technically or commercially viable, since even Tesla's "Autopilot" feature is still a far cry from such level 4 or 5 autonomy.

And even if EVs win the battle for car consumers with sustained help from governments, electricity is still an energy carrier, not an energy source. Renewables may go a long way toward replacing coal in the next two decades, but dispensing with both coal's 28% contribution to global primary energy consumption and oil's 33% in such a short interval looks like a massive stretch. Before the transition to EVs is complete, we may see at least some of them running on electricity generated by gas turbines burning petroleum distillates such as kerosene. (The environmental impacts of such a linkage would be significantly lower than running a fleet of EVs on coal.)

So while China's likely ban on internal combustion engine cars certainly looks like a key step on the path to peak oil demand, it could just as easily force oil producers to find new markets. That happened over a century ago, when a much smaller oil industry saw kerosene lose out to electric lighting and was farsighted or lucky enough to shift its focus to fueling Mr. Ford's new automobiles.

Peak demand for oil definitely lies somewhere in our future, regardless of China's future vehicle choices.  However, as a long-time practitioner of scenario planning, my faith in precise forecasts extrapolated from current facts and trends is limited. Whether we are close to peak demand or, as with a global peak in oil supply, continue to push it farther off, will remain subject to uncertainties that won't be resolved for some time. Our best indication of either peak--demand or supply--will come when we have passed it. However, the idea of an impending peak has shown great potential to affect markets and decisions in the meantime.

Wednesday, October 21, 2015

VW Scandal Puts Diesel's Future at Risk

  • If the VW scandal sours consumers on diesel cars, the potential winners and losers extend well beyond the auto industry.
  • European refineries look especially vulnerable to such a shift, while US refiners, along with manufacturers of electric vehicles, stand to gain.
Whether or not Volkswagen's diesel deception proves to be "worse than Enron," as a Yale business school dean commented, it is more than just the business scandal du jour. Its repercussions could affect other carmakers, especially those headquartered in Europe. And if it triggered a large-scale shift by consumers away from diesel passenger cars, that would have major consequences for the global oil refining industry, oil and gas producers, and sales of electric and other low-emission cars.

The scale of the problem ensures that it will not blow over quickly. Nearly 500,000 VW diesel cars in the US were equipped with software to circumvent federal and state emissions testing, and the company has indicated that 11 million vehicles are affected, worldwide. Even if Volkswagen's retrofit plan passes muster with regulators in the US, Europe and Asia, the resulting recall could take years to complete.

It's also still unclear whether VW's diesel models are unique in polluting significantly more under real-world conditions than in laboratory testing. Regulators in Europe appear to suspect the problem is more widespread. Other companies use similar emission-control technologies--from the same vendors--to control the NOx and particulates from smaller cars equipped with diesel engines. The French government announced plans to subject 100 diesel cars chosen at random from consumers and rental fleets to more realistic testing.

VW faces investigations and lawsuits in multiple countries. While those are underway, the claims of every carmaker selling "clean diesels" and the reputation of a technology that European governments have bet on as a crucial tool for reducing CO2 emissions and oil imports are likely to be under a cloud. How consumers react to all this will determine the future, not only of diesel cars, but of the future global mix of transportation fuels and vehicle types.

Start with oil refining. As long ago as the early 1990s, when I traded petroleum products in London, the European shift to diesel was creating a regional surplus of motor gasoline and a growing deficit of diesel fuel, or "gasoil" as it is often called outside North America. Initially, trade was the solution: The US was importing increasing volumes of gasoline to meet growing demand and had diesel to spare. The fuel imbalances of the US and EU were well-matched, in the short-to-medium term.

As this shift continued, the wholesale prices of diesel and gasoline in the global market adjusted, affecting refinery margins on both sides of the Atlantic. Marginal facilities in Europe shut down, while others invested in the hardware to increase their yield of diesel and reduce gasoline production. US refiners also invested in diesel-making equipment.

The aftermath of the financial crisis and recession increased the pressure on Europe's refiners, as did the rapid growth of "light tight oil" production in the US. Europe's biggest export market for gasoline dried up as fuels demand slowed and US refineries reinvented themselves as major exporters of gasoline.

Diesel cars still make up less than 1% of US new car sales but have accounted for around 50% of European sales for some time. If governments and consumers were now to lose their confidence in diesels and shift back toward gasoline, it would wrong-foot Europe's refineries and leave them with some big, underperforming investments in diesel hardware.  A persistent slowdown in diesel demand would alter corporate plans and strategies as refinery profits shifted. In the meantime, US refineries stand to benefit from a bigger outlet for their steadily rising gasoline output.   

If consumers did retreat from diesel passenger cars--trucks are unlikely to be affected--the shift back to gasoline is likely to be less than gallon-for-gallon, because competing technology hasn't stood still since 2007, when the US Congress enacted stricter fuel economy standards and the Environmental Protection Agency's tougher tailpipe NOx standard went into effect. New gasoline cars are closing the efficiency gap with diesels, thanks to direct injection, hybridization and other strategies. At the same time, the number of new electric vehicle (EV) models is growing rapidly, their cost is coming down, and infrastructure for EV charging is sprouting all over.

EVs still accounted for less than 1% of the US car market last year, but the combined sales of the Chevrolet Volt, Nissan Leaf, Tesla Model S and over a dozen other plug-in hybrid and battery-electric models nearly matched those of the standard Prius hybrid "liftback". EVs are still not cheap, despite generous government incentives that mainly benefit high-income taxpayers. Most still come with a dose of "range anxiety", but they are greatly improved and getting better with each new model year.

Even in Europe, where EVs haven't sold very well outside Norway, a big shift away from diesel would surely help EVs gain market share. If European consumers bought 9 gasoline cars and one EV for every 10 new diesels they avoided, European refiners would soon see not just a shift, but a net drop in total fuel sales. Nor would refineries be the only part of the petroleum value chain to be affected. Global oil demand would grow more slowly as well, bringing "peak demand" that much closer.

For now, this scenario is hypothetical. VW may yet solve its technical problem, bringing the 11 million affected vehicles into compliance with minimal impact on performing and fuel economy. Meanwhile, regulators could find that most other carmakers have been in compliance all along, particularly those selling cars that use the urea-based Selective Catalytic Reduction NOx technology; the rest might only need a few tweaks.

​In that case, the scandal might eventually die down without putting small diesel cars into the grave, as a mock obituary in the Financial Times suggested. Carmakers would have a hard time increasing diesel's penetration of markets like the US, but loyal diesel customers around the world might conclude that these cars still provide them the best combination of value, convenience and drivability. Having driven a number of diesels as rentals and at auto shows, I wouldn't dismiss that possibility too lightly. The jury is likely to be out for a while.

A different version of this posting was previously published on the website of Pacific Energy Development Corporation

Monday, May 04, 2015

US Energy Independence in Sight?

  • The data analysis arm of the US Department of Energy is forecasting that despite low oil prices, the US will become energy independent within a decade. 
  • That result depends on frugality as much as resource abundance, and it includes substantial volumes of energy trade with the rest of the world.
The US Energy Information Administration's latest Annual Energy Outlook features the key finding that the US is on track to reduce its net energy imports to essentially zero by 2030, if not sooner. That might seem surprising, in light of the recent collapse of oil prices and the resulting significant slowdown in drilling. EIA has covered that base, as well, in a side-case in which oil prices remain under $80 per barrel through 2040, and net imports bottom out at around 5% of total energy demand. Either way, this is as close to true US energy independence as I ever expected to see.

It wasn't that many years ago that such an outcome seemed ludicrously unattainable. I recall patiently explaining to various audiences that we simply couldn't drill our way to energy independence. The forecast of self-sufficiency that EIA has assembled depends on a lot more than just drilling, but without the development of previously inaccessible oil and gas resources through advanced drilling technology and hydraulic fracturing, a.k.a. "fracking", it couldn't be made at all. The growing contributions of various renewables are still dwarfed by oil and natural gas, for now.

Every forecast depends on assumptions, and it's important to understand what would be necessary in order for conditions to turn out as the EIA now expects in its "reference case", or main scenario. This includes a gradual but pronounced oil-price recovery, to average just over $70/bbl next year, $80 within five years, and back to around $100 by the end of the 2020s. That helps support a resumption of oil production growth next year, followed by a plateau just above 10 million bbl/day--surpassing 1971's peak output--for the next decade and a gradual decline thereafter. EIA also expects natural gas prices to head back towards $5 per million BTUs by the end of this decade, in tandem with a further 34% expansion of US gas production by 2040.  

However, attainment of zero net imports also depends on the continuation of some important trends, including energy consumption that grows at a rate well below that of population, and a continued decoupling of energy and GDP growth. This is crucial, because through 2040 EIA assumes the US population will grow by another 20% and GDP by 85%, while total energy consumption increases by just 10%. That has important implications for greenhouse gas emissions, too. Energy-related emissions barely grow at all in this scenario.

Renewable energy output is also expected to continue growing, with US electricity generated from wind surpassing that from hydropower in the late 2030s and solar power in 2040 yielding roughly as many megawatt-hours as wind did in 2008.

Finally, reaching a balance between US energy imports and exports also depends on the continued contribution of nuclear power at roughly current levels. That suggests that new reactors in other locations will replace those that are retired, including for economic reasons.

In last month's rollout presentation at the Center for Strategic & International Studies (CSIS) in Washington, EIA Administrator Sieminski also emphasized what is not included in the Outlook's assumptions, notably the EPA's "Clean Power Plan" that is currently under review.  It would be hard to imagine US coal consumption remaining essentially unchanged at 18% of the total energy mix in 2040, if EPA's plan to reduce emissions from the electricity sector by 30% by 2030 were fully implemented. EIA will apparently issue its analysis of the impact of the Clean Power Plan this month.

It's also worth comparing EIA's view of zero net energy imports with popular notions of what energy independence. It certainly does not mean that the US would no longer import any oil, natural gas, or other fuels from other countries. Even as the US approaches zero net imports, routine imports and exports of various energy streams will remain necessary to address imbalances between regions and fuel types.

Because EIA's forecast is predicated on current laws and regulations, it does not include any significant growth in oil exports. As a result, exports of refined products such as propane, gasoline and diesel fuel would continue to expand, eventually exceeding 6 million bbl/day gross and 4 million net of imports. In its "High Oil and Gas Resource" case the constraint on US oil exports forces an expansion of refined product exports that seems nearly incredible when refinery capacity in Asia and the Middle East is also slated for expansion, while refined product demand growth slows globally. Perhaps this is EIA's subtle way of focusing attention on the US's outdated oil export regulations. 

Exports of liquefied natural gas (LNG) would also take off, accounting for around 9% of US production by 2040, while imports of pipeline gas from Canada would shrink but not disappear. In the high resource case, US LNG exports would grow dramatically until the late 2030s, reaching 20% of a much bigger supply.

The report provides a few surprises, including one that won't be welcomed by advocates of biofuels and a continuation of the current federal Renewable Fuels Standard, the reform of which has gradually become a topic of lively debate in the US Congress. EIA's figures show total US biofuel consumption growing by less than 1% per year, with ethanol's only real growth coming in the form of a modest increase in sales of E85, a mixture of 85% ethanol and 15% gasoline, to around 3% of gasoline demand in 2040.

Overall, I'm struck by several things. First, the value of the EIA's forecasts comes mainly from identifying the implications of current trends and policies, rather than accurately predicting the future. Administrator  Sieminski seemed appropriately humble about the latter task in his remarks at CSIS. Yet the reference case this time suggests an eventual reversion to pre-oil-crash conditions, ending in 2040 at the same oil price in 2013 dollars as last year's forecast--a level that would exceed the 2008 peak by a sizeable margin. That seems inconsistent with a world of expanding energy options, improved drilling efficiency, at least for shale, and a growing focus on the decarbonization of energy.

There also appears to be a disconnect between the forecast's rising real price of natural gas, with implications for the cost of electricity generation, and its virtual flatlining of solar power's expansion after the scheduled expiration of the current solar tax credit in 2016. This looks like a bet against further solar cost reductions and technology improvements, along with structural changes that are already occurring in some electricity markets.

Despite these reservations, I wouldn't dispute the headline finding of steady progress toward a version of US energy independence featuring large volumes of energy trade with both North America and the rest of the world. The combination of resource growth and steady energy efficiency improvements looks like a recipe for finally putting the US on an energy footing that politicians of both major parties have only dreamed of for the last 40 years.
 
A different version of this posting was previously published on the website of Pacific Energy Development Corporation

Wednesday, August 28, 2013

Will Fewer Young Drivers Today Mean Lower Fuel Demand Tomorrow?

  • Driver's licenses for those under 40 years of age are down in several large, developed countries, including the US. This is only partially explained by a weak economy.
  • If this shift in attitudes towards driving persists, future demand for both cars and fuel could be permanently reduced.
Current forecasts from the Energy Information Administration indicate that US gasoline demand peaked in 2007 and is expected to decline steadily for at least the next two decades.  One of the most intriguing factors aligned with this shift, which would have been almost unthinkable only a few years ago, involves a surprising reduction in the number of licensed drivers under 40 years of age.  A new study from the Transportation Research Institute (TRI) at the University of Michigan helps to explain a trend that is apparently not unique to the US.

Prior to the Great Recession, US gasoline demand had grown by 1-2% per year, with few interruptions. Since the recession, it has been shrinking for reasons that don't appear to be temporary. New cars are becoming more fuel-efficient, and Americans are consistently driving less than before the recession,  as indicated in the latest statistics on vehicle miles traveled.  To some extent this is an understandable response to gasoline prices that have remained significantly higher in real dollars than they were from 1982-2006. However, there may be other, deeper shifts underway.  If a segment of younger Americans has not only delayed getting a driver's license, but may never get one, then the decline in motor fuel demand is likelier to be permanent.

Once I started reading the survey results in the new study by the TRI's Brandon Schoettle and Dr. Michael Sivak, I knew I also needed the context of their 2011 paper on "Recent Changes in the Age Composition of Drivers in 15 Countries." That study showed that from 1983 to 2008 the number of licensed drivers in the US as a percentage of each age group up to 40 had dropped significantly, while the opposite was true for those over 50. (See chart below.) The authors found similar shifts in 7 other developed countries, including Canada, the UK, Germany and Japan, with a 2012 update indicating a further decline in US pre-40 licensing through 2010. Interestingly, Spain, Poland, Israel and several other countries exhibited increases in licensing among both younger and older drivers.
 
In their current paper, the authors used an online, non-random survey of 618 under-40 non-drivers to explore the reasons for their status. The top reasons their respondents gave for not having a driver's license seemed mainly practical, rather than philosophical. Many of those under 30 reported being "too busy or not enough time to get a driver's license",  or "able to get transportation from others." The "cost of owning and maintaining a vehicle" was the second-most common reason among all respondents, and as the authors noted, that is consistent with the relatively high unemployment or full-time student status of this group--46% and 21%, respectively.
 
Other common responses suggest that at least some of those without licenses are in that position by intention, rather than necessity. Nearly 40%--likely including some overlap--reported a preference for biking, walking or public transportation as a primary or secondary reason, while 9% cited environmental concerns and 8% mentioned online alternatives to driving.

Having grown up in a time and place where obtaining a driver's license as close as possible to one's 16th birthday was both a rite of passage and a practical necessity, this is that rare energy issue that's hard for me even to relate to. Yet when I look at the above chart, with its mirror-image shifts, I'm struck by the similarity between recent under-40 driver's license data and those for the cohorts born between the World Wars.  Are the current license rates of Millennials and late-Gen-X'ers the anomaly, or will those of my Baby Boomer and early Generation X peers turn out to be uniquely high? Only the passage of time can clarify such questions.

While the authors stopped short of assigning cause and effect, it seems reasonable to conclude that at least part of what we're seeing here is the result of the stubbornly persistent youth unemployment of a tepid recovery and the "New Normal" economy. A few years of much stronger economic growth might shrink the gap shown in Figure 1, by addressing the reasons that many of those surveyed gave for not having a driver's license, particularly since only 6% of them reported they never learned to drive.  Of course that doesn't explain why more than a third of those in the 30-39 age group, who ought to be the most financially settled, indicated they planned never to get a license.

The survey's results and their implications ought to be of great interest to producers of conventional and alternative fuels, established auto manufacturers, car rental firms, as well as transportation planners and policy makers.  Even electric-vehicle startups like Tesla might wonder whether for a significant segment of their natural future market, the choice won't be between an EV and a conventional car, but between a car and not driving at all. This is a trend that bears watching.
 
A different version of this posting was previously published on the website of Pacific Energy Development Corporation.

Thursday, May 12, 2011

Collecting Road Taxes After Peak Gasoline

On Monday I was interviewed on Chicago's WGN Radio on the subject of switching the collection of federal highway taxes from the current assessment on motor fuel sales to a fee on vehicle miles traveled (VMT). The gas tax is always a hot-button subject, and when it's combined with potential concerns about privacy it becomes even more controversial. However, the path we're on is a slow-motion train wreck, for multiple reasons, and I'm relieved to see that with so much attention focused on other, larger aspects of the budget deficit and taxation, this relatively small yet important corner of the tax system hasn't been forgotten. It's high time to plan for how we will pay for the upkeep of our highways as sales of gasoline begin to decline.

The interview was prompted by some comments I made on this subject to Tom Curry of MSNBC. Since my conversation with him and then with Mr. McConnell of WGN I've been doing some more thinking about the problem, which I've discussed here since 2005. For some time it's been apparent that we have a disconnect between federal energy policies explicitly aimed at reducing our consumption of petroleum products and a road tax system that depends on the stability and growth of those sales. With gas prices again near their 2008 maximum and the auto industry required to sell consumers a more efficient mix of cars each year, it appears that US gasoline demand might have peaked in July 2007 and won't reach that level again. Lower gasoline sales mean lower gas tax collections, unless the tax rate is steadily increased, encroaching on one of the third-rail issues of US politics.

This is the long-term part of the gas tax problem. It's true that it takes decades to turn over the US passenger car fleet. Nevertheless, the more highly efficient cars are sold, including this year's crop of 40 mpg non-hybrids, plus hybrids, clean diesels, and a tiny but growing number of EVs and other cars using no liquid fuels at all, the harder it will become to fund the cost of road maintenance from its traditional source at the gas pump.

The problem has a more immediate dimension, too, because gas tax collections haven't been sufficient to balance the Federal Highway Trust Fund (HTF) for some time. According to a recent study by the Congressional Budget Office the taxes on gasoline and diesel fuel brought in about $32 billion last year, but between 2008 and 2010 an additional $30 billion had to be transferred from the general fund to the HTF to keep it in the black and avoid canceling or delaying projects. Given the deficit, such transfers add directly to the national debt. Nor is the current level of expenditures adequate to address the decay of many of our roads, as assessed by the American Society of Civil Engineers. This issue received a lot of attention in the aftermath of the 2007 collapse of the I-35W bridge in Minneapolis-St.Paul, but it faded after a few news cycles.

So we need to come up with more money to keep federally-funded highways in good repair, despite the principal funding mechanism being on a gradual but inexorable downward slope. States face a similar dilemma. Solving this problem requires creativity and most likely a new funding mechanism for all or part of a gap that is expected to grow in the years ahead. Simply extending the status quo will require steadily larger transfers from the general fund, exacerbating the deficit. It would also create growing inequities by weakening the long-established link between usage and financial responsibility, compounded by EVs and other vehicles that pay no road taxes at all under the current system. Unless you think EVs will never expand beyond a tiny niche of early adopters, that's unsustainable. (Some might argue that EVs should escape this tax as a further stimulus to sales, but in my view $7,500 per car ought to be inducement enough for anyone interested in buying one.)

There are several possible remedies for shrinking gas tax revenue, with partial or total conversion to a mileage-based system topping the list. It retains the fairness of "user pays" and encompasses all cars, whatever their energy source. It might also trade off a lower tax burden for the drivers of older, less-efficient cars for a slightly steeper bill for newer, more frugal cars. However, considering that the annual federal gas tax bill for someone driving an average car 12,000 miles per year is currently only about $100, any differences between the gas tax and a replacement VMT tax--not to be confused with a VAT tax--would be unlikely to influence car choice one way or the other.

If a VMT tax is the answer, the question of how to assess and collect it looms large. As I noted in the interview I worry about a tendency to rush to a technology solution, even though other options might do the job without requiring GPS-based tracking that a significant number of Americans would consider unacceptably intrusive. If you doubt that, consider the controversy over alleged smartphone tracking by Apple and Google. I would not dismiss low-tech methods such as odometer readings at vehicle inspections, or even self-reported odometer readings where such inspections aren't required. This might introduce new opportunities for fraud, but I'm willing to be that a GPS tracker could be spoofed, and all of these potential loopholes pale compared to the current problem of fuel tax evasion by organized crime and unscrupulous distributors and dealers.

I like the idea of testing this concept in a few locations, particularly if the tests include a wide variety of approaches. The slow uptake of EVs and the gradual shift of total fleet fuel economy give us enough time to find the best solution, if we start now. But lawmakers should ensure that such tests are finite and designed for quick evaluation, so that the window of opportunity presented by the broader tax reform discussions between now and the next presidential inauguration isn't missed.

Friday, October 09, 2009

Meme Watch: Peak Demand

To whatever degree the oil price spike of 2007-8 was driven by speculation, the latter was riding on a wave of concern about Peak Oil, which anticipates an imminent decline in maximum global oil production. For the moment, the weak global economy has eased such worries, though they have hardly vanished, as I noted two months ago. Lately, however, conventional notions of Peak Oil are increasingly being challenged by a new meme, or contagious idea, called Peak Demand, which suggests that oil consumption is reaching a plateau from which it will soon decline, mitigating the worst consequences of Peak Oil. Neither of these memes would attract much interest if they weren't supported by a welter of statistics, however selective those might seem to their critics. And just as Peak Oil was much less credible and worrisome before we saw super-giant oil fields like Mexico's Cantarell go into precipitous decline, the logic of Peak Demand would have been much less compelling before US oil demand dropped by nearly 6% last year.

Earlier this week, a friend shared a copy of a report from Deutsche Bank Global Markets Research describing their view of the future oil market shaped by coinciding--and related--peaks in global oil supply and demand. Unfortunately, the report doesn't seem to be available on DB's public website, though it was recently summarized on the Wall St. Journal's Environmental Capital blog. While I spotted several possible weak points in their analysis, they make a strong case that the combination of improved efficiency and the electrification of vehicles will result in the global demand for oil stalling and eventually falling, roughly around the same time many analysts expect global oil supplies to peak.

Perhaps I was predisposed to accept this logic. My presentation on the Alternative Energy panel of the recent IHS Herold Pacesetters Energy Conference included a graph highlighting the ongoing compression of US petroleum gasoline demand between falling motor fuel consumption and rising biofuels supplies, a topic that was subsequently reported in the Journal's "Heard on the Street" column. At that same conference I also heard the Managing Director of CERA's Global Oil Group describe his firm's rigorously researched view of an impending peak in global oil demand. Peak Demand can't easily be dismissed as a "fringe" theory, because it is based on a combination of hard data and thoughtful analysis and forecasting.

My purpose in mentioning Peak Demand now isn't to debate its merits in depth; that's a matter for another day. Rather, on the basis of my conviction that there's at least a reasonable case for such an outcome, I thought I'd spend a moment musing on the consequences of the proliferation of this meme in the marketplace of ideas related to energy. After all, the Peak Demand meme challenges two key pieces of conventional wisdom about oil, one or both of which are central to the rate at which Peak Oil (supply) might be approaching. First, it undermines the notion that once the US economy finds its way back to meaningful growth, oil demand will resume its former trajectory, which had seen gasoline demand growing by 1-2% per year and diesel demand growing at an even faster pace. With a major new emphasis on miles per gallon and the demise of the SUV fad, the fuel economy of the total US car fleet doesn't need to improve by very much each year to outpace our underlying population growth and a modest resurgence in vehicle miles traveled. Secondly, the same dynamic might even hold true for large developing markets, if electric vehicle demand grew rapidly enough, undermining the notion that whatever happens in the US and EU, oil demand from China and India constitute an unstoppable juggernaut.

With spare global oil production capacity effectively used up by 2007, the logic of Peak Oil helped to provide the narrative support for an oil market that ran up from the low $50s to $145 per barrel in the course of 18 months. How different might a future oil price spike be, if instead of a widely-shared view that oil was on the verge of becoming truly scarce--rather than merely expensive--there were an equally widely-held expectation that in the long run that scarcity might become irrelevant as a result of the demand for the commodity gradually unwinding of its own accord? Such dueling memes, together with painful memories of oil's collapse down to $33 last winter, might give some traders pause, before again buying into the notion that $100 oil would soon give way to $200, $300, or $500 per barrel.