Wednesday, October 29, 2014

China Seizes Opportunity to Fill Its Petroleum Reserve. Should Others?

  • China is apparently snapping up cheap oil cargoes to fill its strategic petroleum reserve.
  • That might make sense for the US, too, if earmarked for new regional SPRs, rather than refilling the existing one on the Gulf.
The Wall St. Journal has reported that state-owned oil companies in China are capitalizing on lower prices to fill that country's strategic petroleum reserve (SPR). The obvious question is whether the US should do the same, particularly since surging oil output from shale deposits is a major factor in the recent rebalancing of the oil market. If that means putting more oil into caverns on the Gulf Coast, the answer should be no. However, this could be an opportunity to begin creating strategic reserves for parts of the country like the West Coast that are poorly served by our 1970s-vintage SPR.

Superficially, $80 oil provides a tempting chance to turn a profit while replacing the 30 million barrels of oil the US government sold as part of a "coordinated release" with other International Energy Agency members during the Libyan revolution. Comparing the average WTI price in June 2011 to today's, the Department of Energy could pocket around $15 per barrel on the overall sale and repurchase. However, much has changed in the last three years.

When I examined this subject a year ago, the dramatic reduction in US oil imports resulting from the combination of resurgent production and lower consumption had roughly doubled the effective capacity of the SPR, in terms of the number of days of lost imports it could cover in a crisis. Since then, US crude oil imports have fallen by another 5% or so, increasing SPR coverage correspondingly--at least for the parts of the country to which it can easily deliver.

Yet as I noted in another post earlier this year, US oil imports aren't just falling; they are shifting in location. The West Coast, where domestic production has been declining, not growing, now accounts for about 15% of US crude oil imports. It has essentially no dedicated petroleum reserve, other than commercial inventories that are roughly 50% lower than when I traded oil for Texaco's refining and marketing subsidiary in the early 1990s. If oil prices fell much further, it might even make sense for west coast refiners to stock up, regardless of what official action the US government took.

With US oil production still increasing, demand stable or falling, oil imports shrinking, and imports from Canada growing in both absolute and relative terms, it is high time to reconsider holding nearly 700 million barrels of oil--$55 billion worth even at today's depressed prices--in a part of the country where production could soon surpass its 1972 peak. This seems like exactly the kind of overdue reform opportunity that a new Congress might be interested in taking up next year.

Monday, October 27, 2014

How Would We Provide Enough Energy For 11 Billion People?

  • Reconciling energy and environmental concerns was challenging enough when global population seemed headed for a plateau around 9 billion.
  • A new forecast of up to 12 billion people by 2100 raises large questions about the capacity of current energy technologies to meet future global needs.
The combination of forecasted global economic weakness and growing non-OPEC production continues to weigh on oil prices.  Brent crude has fallen below $90 per barrel, and the US benchmark has been flirting with $80. But just when the rapid growth of energy supplies has undermined the mood of energy scarcity that prevailed for the last four decades, a group of demographers has thrown us a curve ball, though admittedly a very long one. 

In the 1970s many people were concerned about a "population explosion." Dystopian fiction--already a well-established sub-genre--featured visions of a grossly overcrowded future earth, along the lines of "Soylent Green." However, something happened on the way to such nightmares: birth rates in developed countries as well as large developing ones like China slowed in tandem with rising incomes. Instead of a world of 12 billion by 2100 or sooner, long-term population estimates in the last decade, including from the United Nations, began to focus on an eventual plateau around 9 billion.

Now it appears those lower forecasts might have been too optimistic, particularly with regard to birth rates in sub-Saharan Africa. The analysis in a paper published in Science last month suggests that growth will continue beyond the end of the current century. The authors expect global population in 2100 to reach 9.6 to 12.3 billion. That could have significant implications for energy demand and climate change, among other environmental and development issues, while in turn being influenced by them.  Nick Butler, who writes on energy for the Financial Times, looked at this from the perspective of oil and other energy sources and concluded, "None of the current technologies...offer an adequate answer."

I would take Mr. Butler's observation a step farther.  It's extremely challenging to say anything confidently concerning how much energy the world of 2100 might need, or where it will come from. Forecasts are rarely accurate beyond a few years, and even scenario methods struggle to cope with the unknown-unknowns involved in such time frames.

Recall that in 1928--as far removed from today as 2100-- world oil production was less than 5 million barrels per day, and the first chain reaction making nuclear power possible was still 14 years in the future. Natural gas was mainly viewed as a low-value byproduct of oil production, while wind power was considered quaint. And with a global population of just over 2 billion at the time, meeting the energy needs of today's 7 billion might have seemed even more daunting than supplying 11 or 12 billion does to us.

It's also worth keeping in mind that more than three-fourths of today's oil is consumed by countries with just 60% of the world's population.  The curve drops off steeply from there, leaving roughly 2 billion without modern energy services. So the energy implications of an extra two billion people by the turn of the century depend heavily on whether their energy demand looks more like today's top 4 billion or bottom 2 billion energy consumers. The recent "Africa Energy Outlook" from  the International Energy Agency (IEA) examined how energy supply on that continent might develop, along with the necessity of shifting investment from exports to domestic consumption to bridge that gap.

For that matter, even if an expansion of global fossil fuel production on the scale required to meet the needs of billions of additional consumers were possible, due to the technology that is currently unlocking oil and gas from source rock rather than conventional reservoirs--a.k.a. the shale revolution--it would bypass any notions of a "carbon budget" that might constrain the projected global temperature increase to a manageable level. It's a reasonable bet that however many people are alive in 2100, they will use less fossil fuels per capita than we do.

Consider what some of today's mainstream forecasts indicate about the future energy mix. The main "New Policies" scenario of the IEA's 2013 World Energy Outlook sees renewable energy growing from 11% to 18% of total primary energy by 2035, while its more aggressive "450" scenario has these sources supplying 26%, with commensurate reductions in fossil fuels. Shell's current long-range scenarios envision divergent futures in which fossil fuels still supply 50-60% of nearly doubled energy demand by 2060, but shrink to around 20% or less by 2100.

One big trend that could help facilitate that kind of change is electrification, which will increasingly displace liquid fuels from illumination, cooking, and even transportation. That's important because while we have few practical large-scale alternatives to petroleum for liquid fuels, we have many ways to generate electricity and could accommodate more, including the long-awaited arrival of practical nuclear fusion--perhaps along the lines announced by Lockheed Martin earlier this month--or some other, currently unanticipated energy source. Eight decades would be more than sufficient for an entirely new generating technology to become significant. 

Reconciling the energy needs of a large, growing population with preventing dangerous global warming--referred to by some as the "energy dilemma"--thus appears to require a sustained, protracted transformation of the entire energy economy. That shouldn't be a surprising insight. The bigger question is whether such a transformation can be achieved through the gradual evolution of the energy technologies available today, or whether it will require revolutionary developments. That remains a matter of considerable debate in energy circles. 

A different version of this posting was previously published on the website of Pacific Energy Development Corporation.

Wednesday, October 15, 2014

The Impact of the Global "Sweet" Crude Bulge

  • The recent slide in global oil prices has been compounded by the pressure that rising US shale oil production is putting on the price of sweet crude benchmarks like Brent.
  • OPEC's producers may suffer as much as those in the US, while consumers benefit from significantly lower fuel prices than last year.
When the US went to war in Iraq in 2003, the price of oil embarked on a trend that took it from around $30 per barrel to nearly $150 before collapsing in the recession in 2008. This time, as a new US-led coalition takes on ISIS with a bombing campaign in Iraq and Syria, the price of oil is falling, down 20% in the last two months. It's not just that global economic growth has weakened recently, or that soaring shale oil output in the US has averted another oil crisis. Oil's current downturn also reflects the fact that new production from the Bakken, Eagle Ford and other shale deposits is particularly well-suited to undermine oil's global benchmark prices, for Brent and West Texas Intermediate, both of which are made up of light sweet crude oil streams.

The numbers for US shale, or "light tight oil" (LTO) as it's often called, are impressive, especially to those accustomed to watching the gradual ebb and flow of different oil sources over long periods. In the 12 months ending in June 2014, US oil production grew by 1.3 million barrels per day (MBD), not far short of Libya's pre-revolution exports. Since January 2011, the US added 3 MBD, or about what the UK produced at its peak in 1999. In fact, since 2010 incremental US LTO production has exceeded the net decline of the entire North Sea (Denmark, Norway and UK) by around 2 MBD, contributing to a significant expansion of Atlantic Basin light sweet crude supply.

The New York Mercantile Exchange defines light sweet crude as having sulfur content below 0.42% and an API gravity between 37 and 42 degrees. That's less dense than light olive oil. The specification for Brent is similar. Much of the LTO produced from US shale formations fits those specifications, and what doesn't is typically even lighter and lower in sulfur.

The current "contango" in Brent pricing, in which contracts for later delivery sell for more than those for delivery in the next month or two, is another sign of a market that is physically over-supplied: more oil than refineries want to process, with the excess going into storage. However we also see indications that the historical premium assigned to lighter, sweeter crude versus heavier, higher-sulfur crude is under pressure.

One example of this is the gap or "differential" between Louisiana Light Sweet, which wasn't caught up in the delivery problems that plagued West Texas Intermediate for the last several years, and Mars blend, a sour crude mix from platforms in the Gulf of Mexico. From 2007-13 LLS averaged around $4.50 per barrel higher than Mars, while for the first half of this year it was only $2.75 higher and today stands at around $3.40 over Mars.

And while OPEC's reported Reference Basket price has been falling in tandem with Brent, its discount to Brent had also narrowed by about $1 per barrel, prior to the price plunge of the last couple of weeks, compared with the average for 2007-13. Considering that OPEC's basket includes light sweet crudes from Algeria, Libya and Nigeria that sell into some of the same Atlantic Basin markets as Brent, that looks significant.

By itself a narrowing of the sweet/sour "spread" of only a dollar or so per barrel isn't earth-shattering. However, because the surge of US oil production is effectively focused on the oil market segment represented by the price of Brent, it compounds the pressure on OPEC, many of whose members link the price of their output to Brent. This might help explain why the response of OPEC's leading producer, Saudi Arabia, has been to cut prices rather than output, in an apparent effort to maintain market share rather than price level.

The Saudis know better than anyone how that movie could end. The Kingdom's1986 decision to implement "netback pricing", linking the price of its oil to the value of its customers' refined petroleum products, helped precipitate a price collapse so deep that it took oil prices 18 years to reach $30/bbl again, by which time the dollar had lost a third of its value.

Whether aimed at US shale producers or as a reminder to the rest of OPEC, which appears to be unprepared to make the output cuts necessary to defend higher oil prices, the Saudi action increases the chances that oil prices will over-correct to the downside, rather than rebounding quickly. If so, the impact of the sweet crude bulge in the Atlantic Basin--only a little more than 3% of global oil supplies--could play a disproportionate role in prolonging the pain producers will experience until oil markets eventually reach a new equilibrium.

In the meantime, US consumers are benefiting from gasoline prices that are already $0.15 per gallon lower than this week last year. Today's wholesale gasoline futures price for November equates to an average retail price well below $3.00 per gallon, after factoring in fuel taxes and dealer margins, compared to last year's average retail price for November of $3.24. After factoring in lower diesel and heating oil prices, the fall in oil prices could put an extra $10 billion in shoppers' pockets for this year's holiday season.

A substantially different version of this post was previously published on the website of Pacific Energy Development Corporation

Thursday, October 02, 2014

Calibrating Solar's Growth Potential

  • A new report from the International Energy Agency suggests the possibility of solar power becoming the world's largest electricity source by 2050.
  • It is noteworthy that IEA thinks this could happen, but the growth rates required, let alone the policies necessary to support them, will be challenging to sustain.
In the wake of last month's UN Climate Summit in New York City, Monday's report from the International Energy Agency (IEA) on "How solar energy could be the largest source of electricity by mid-century" ought to be welcome news. At the same time, it conflicts with perceptions that some countries are already farther along than that. So IEA's indication of the feasibility of generating 26% of global electricity from solar energy by 2050 either looks quite ambitious or quite conservative, depending on your current perspective.

For me it always comes down to the numbers, without which it's impossible to grasp systems on the scale and complexity of global energy. IEA's high-solar roadmap--it's not a forecast--includes significant contributions from both solar photovoltaic power (PV) and solar thermal electricity (STE)--often referred to as concentrating solar power, or CSP--with the former making up 16% of global electricity at mid-century and the latter around 10%. As the detailed report from IEA indicates, achieving the headline result would require global installed PV capacity to grow 35-fold between 2013 and 2050, equivalent to an average of 124 Gigawatts (GW) per year of additions, peaking at "200 GW/yr between 2025 and 2040." That's a 6x increase in installations over last year.

To put that in a US electricity generation perspective, IEA projects that the US would have to hit one million GW-hours per year from PV--roughly what we currently get from natural gas power plants--by around 2035 to meet its share of the anticipated global solar buildup. US solar installations are on a record-setting pace of nearly 7 GW this year, but matching natural gas would require 120x growth in solar generation, or a sustained compound average growth rate over 25% for the next 20-plus years. That's not impossible, as recent PV growth has been even higher, but it won't be easy to continue indefinitely, especially without further improvements in the technology, and in energy storage.

The solar thermal portion of IEA's technology roadmap looks like a much tougher challenge. STE has been losing ground to PV lately, as the costs of the latter have fallen much faster than the former, for reasons that aren't hard to understand. Making PV modules cheaper and more efficient is analogous to improving computer chip manufacturing, while making STE cheaper and more efficient is more similar to manufacturing cheaper, more efficient cars or appliances.

One of the main reasons IEA appears to have concluded that STE could suddenly start competing with PV again is its inherent thermal energy storage capability, which enables STE to supply electricity after the sun has set. While I wouldn't discount that, it looked like a bigger benefit a few years ago, before electricity storage technology started to improve. Storage of all types is still expensive, which helps explain why fast-reacting natural gas power plants offer important synergies for integrating intermittent renewables like wind and solar power. However, it looks like a reasonable bet today that batteries and other non-mechanical energy storage technologies will improve faster than thermal storage in the decades ahead.

The upshot of all this is that getting to 16% of global electricity from PV by 2050 is a stretch, and the 10% contribution from STE looks like even more than a stretch. So how does that square with recent reports that Germany--hardly a sun-worshipper's paradise--got "half its energy from solar" for a few weeks this summer? A recent post on The Energy Collective does a better job of clarifying the significance of that than I could, providing links to German government data indicating that solar's average contribution in 2013 was just 4.5% of electricity--hence less than half that in terms of total energy consumption. The author extrapolates that at current rates of annual installations, it would take Germany nearly a century to get to 50% of its electricity from the sun.

Much can happen in 35 years that we wouldn't anticipate today. For now, solar PV looks like the energy technology to beat, in terms of low lifecycle greenhouse gas emissions and long-run cost trends. But whether it reaches the levels of market penetration the IEA's report suggests are possible, or tops out at less than 5% of global electricity supply, as their baseline scenario assumes, it must function within an energy mix that includes other technologies, such as fossil fuels, nuclear power and non-solar renewables. And that's true whether or not electric vehicles take off in a big way, which would significantly increase electricity demand and make the IEA's high-end solar targets even more difficult to reach.

Friday, September 19, 2014

The Two Energy Revolutions Are Progressing in Tandem

Last year I wrote about the two major energy revolutions happening globally, the shale revolution--mainly in the US--and the renewable energy revolution, focused more on technologies than geography but with big concentrations in Europe and increasingly Asia and the Americas. Two stories in the Financial Times (registration/subscription required), which has lately been doing an excellent job covering energy, illustrate that we are still in the early days of both. Bigger changes lie ahead.

One story covers the development of the "South Central Oklahoma Oil Play", or SCOOP, an acronym that's new to me and, I suspect, many of my readers. Continental Oil, a major player in the Bakken and other shale oil resource areas, has apparently reported that SCOOP may contain up to 3.6 billion barrels (oil equivalent) of recoverable oil and gas. That's more oil than was produced in Alaska in the last 15 years, based on the graphic accompanying the article.

Along with the unconventional portions of the Permian Basin in Texas and New Mexico and Ohio's Utica shale, and with the reviving liquids production from Wyoming's Powder River Basin and elsewhere, the upside for US oil output still looks significant. Its economics may become challenging if oil prices remain weak for more than the next year or two, but our picture of oil and gas as mature resources may need to be revised.

The title of the other article, "US Solar and Wind Start to Outshine Gas" seized my attention. Its key quote is from the head of power, energy & infrastructure at investment bank Lazard: "We used to say some day solar and wind power would be competitive with conventional generation. Well, now it is some day"--at least for some technologies, in some locations, at larger scales.  The firm's latest analysis shows continued cost declines for wind and solar.

It also raises a very interesting and pertinent question about whether subsidies for residential-scale solar (i.e., rooftop PV, which remains much costlier than at utility scale) are "distorting the long-term energy planning process." That's a question we are likely to hear a lot more about when the current US 30% investment tax credit for solar equipment, which benefits higher-cost installations more than cheap ones, comes up for renewal. Nevertheless, solar power, particularly in combination with emerging energy storage solutions, looks increasingly likely to transform the utility landscape in the years ahead.

You may have noticed a decrease in my blogging frequency, recently. I've been preoccupied with project work and personal matters for the last couple months, but I should be back to my normal pace by October. There's certainly no shortage of topics worth discussing here.

Friday, September 12, 2014

Exporting US Oil to Mexico

  • Mexico could become a major export destination for surplus US light crude oil, despite being one of the largest oil suppliers to the US, mainly of heavy oil.
  • If structured as an exchange for other barrels, such exports might not require re-writing US oil export regulations, unlike sales to non-neighboring countries.
Two of the biggest energy stories of the last twelve months have been the reform of Mexico's oil sector after 75 years of state monopoly and the US oil industry's drive to gain approval to export a growing surplus of domestic light crude oil. The prospect of exporting US oil to Mexico connects these developments in a surprising way. It should make sense geographically and economically, though regulatory hurdles remain. Yet it could also increase tension between US oil producers and refiners over the merits of exporting crude versus refined products.

At first glance, the idea seems counterintuitive. Our southern neighbor was the third-largest exporter of oil to the US last year, consistently ranking above Venezuela. However, most of Mexico's oil is heavy and sour, in contrast to the light, low-sulfur "tight oil" (LTO) produced from US shale formations like the Eagle Ford of Texas.

Mexico has experienced supply and demand trends similar to what the US saw prior to our shale revolution. Total oil and gas liquids production has fallen by 25% since 2004, largely due to the declining output of Maya crude from the supergiant Cantarell field, while demand for refined products grew by around 20% in the same period. Lightening the crude oil slate of Pemex's oil refineries with LTO imported from the US could augment efforts to increase throughput and yields of transportation fuels.

The Commerce Department's recent approval for two US companies to export lightly-processed condensate, which despite its similarities is technically not crude oil, was followed by a hold on similar applications. These events have fueled both enthusiasm and confusion concerning US oil exports, which are still politically controversial, after decades of declining US production and periodic price spikes.

An easier sell might involve the exchange or "swap" of surplus LTO for imported heavy oil, and Mexico makes an ideal partner for this kind of transaction. Existing law at least recognizes the potential for such swaps with "adjacent countries", though it remains to be seen whether such a deal could be made to fit language specifying that the oil received be of "equal or better quality".

As a former oil trader, it strikes me that the best ways to close that gap might be to structure an LTO vs. Maya swap as a barrel-for-barrel exchange in which the US party would collect a financial premium in recognition of the quality difference--money being another measure of quality--or a "ratio exchange" in which every barrel of LTO delivered would be matched by a larger quantity of Maya, at a proportion determined by the refining values of the two oils. Either option would still require some regulatory finesse, but of a much different type than approving the outright, net export of US oil production.

The biggest stumbling block to an exchange of LTO for Mexican crude would probably be one of the same ones impeding the general lifting of a US oil export ban that the Washington Post has called "an economically incoherent policy." While US oil producers argue that allowing exports would enable their product to be sold for its global value and incentivize even higher future production, US oil refiners see exports as a threat to their margins and to the growth of their own exports of refined products. These have been crucial in sustaining arguably the world's best refining industry in the face of a weak economy and declining demand at home. 

Mexico is at the heart of this trend. Its imports of LPG, gasoline, diesel and other fuels from the US have increased to over 500,000 barrels per day (bpd) in recent years. Mexico accounted for 44% of all US gasoline and gasoline blending components exported last year, along with 10% of diesel fuel exports and 15% of LPG. I don't think it's controversial to suggest that exporting light crude oil to Mexico would come at least partly at the expense of our refined product exports to the country.

This boils down to the familiar economic dilemma of exporting raw materials versus capturing the value added from selling manufactured goods. I'm sympathetic to the refining industry's concerns, and not just as a former refinery engineer. However, those concerns would carry more weight if US refineries had the capacity to process all of the LTO the US is likely to produce in the years ahead, and to pay a world-market price for it. Refiners might benefit from access to lower-priced crude, but if driving down the value of LTO in a confined market choked production, net US oil imports would be higher than otherwise and the economy would be worse off.

Stepping back from the details of that debate, exporting US light crude oil in exchange for Mexican heavy crude looks attractive within a broader and increasingly credible vision of North American energy self-sufficiency. That wouldn't mean cutting North America off from the global oil market, but it would put us and our neighbors in the enviable position of being able to select imports based on opportunity rather than necessity. A reformed and revitalized Mexican oil industry, importing and exporting oil with its neighbors as it makes sense, could be a cornerstone of that vision.

A different version of this posting was previously published on the website of Pacific Energy Development Corporation.

Wednesday, August 27, 2014

Threats and Opportunities of Distributed Power Generation

  • Rooftop solar panels aren't the only distributed generation technology that could challenge existing utility business models as it grows.
  • Some power companies see DG as an opportunity and are entering this segment in ways that could prove challenging to their start-up competitors.
Two recent news stories highlighted different ways that utilities and large generating companies are beginning to respond to the emergence of distributed generation (DG) as more than back-up power. Arizona Public Service (APS) is launching its version of potentially the most challenging type of DG for utilities, rooftop solar. Meanwhile, Exelon Corp. announced an investment partnership with a provider of gas-powered fuel cells. The success of such ventures and the evolution of DG will have implications for electrical grid stability and our future energy mix, including the role of flexible, large-scale gas-fired generation.

APS is seeking regulatory approval for a program that might be characterized as free rooftop solar. In effect, they would lease approved homeowners' rooftops for $30 per month, in order to host a total of 20 MW of solar panels that would be owned and controlled by APS. The idea has generated some controversy, partly due to the utility's rocky relationship with the solar industry over issues like "net metering". 

The plan would enable homeowners who might not otherwise qualify for solar leasing from third parties to have solar installed on their homes, although they would apparently still receive their electricity through the meter from the grid, rather than mainly from the rooftop installation. That's a very different model from most DG approaches, though under current market conditions the net benefit to consumers reportedly would match or exceed that from solar leasing.

Exelon's announcement seems aimed at a different segment of the market, and based on a very different technology. The company would finance the installation of 21 MW of Bloom Energy's fuel cell generators at businesses in several states, including California. Bloom made quite a splash when it introduced its "energy servers", including a popular segment on "60 Minutes" in 2010.

Bloom's devices, which come in models producing either 100 kW or 200 kW, are built around solid oxide fuel cells.  At that scale they are too large for individual homes but suitable for many businesses. And because they are modular, they can be combined to meet the energy needs of larger offices or commercial facilities such as data centers. Unlike the fuel cells being deployed in limited numbers of automobiles, they do not require a source of hydrogen gas. Instead they run directly on natural gas from which hydrogen is extracted ("auto-reformed") inside the box.

In that respect, despite their novel technology, Bloom's servers are much closer than rooftop solar to traditional distributed energy, in which a customer owns or leases a small generator to which it supplies fuel. The advantages of Bloom's model are that its servers are designed for highly efficient 24x7 operation, without the expensive energy storage necessary to turn solar into 24x7 power, and with much lower greenhouse gas emissions and local pollution than a diesel generator.

In order to qualify as true zero-emission energy, these installations would need to be connected to a source of biogas, e.g., landfill gas, which effectively creates a closed emissions loop or recycles emissions that would have occurred elsewhere.  Even running on ordinary natural gas, the stated emissions of Bloom's energy servers are roughly a third less than the average emissions for US grid electricity, or 20% lower than the average for other natural gas generation. However, their emissions are over 10% higher than the 2012 average for California's grid.

I find it interesting that Exelon, the largest nuclear power operator in the US and owner of a full array of utility-scale gas, coal, hydro, wind and solar power, would make a high-profile investment in a technology that could ultimately slash the demand for its large central power plants. The company has invested in utility-scale solar and wind power, and as the press release indicated, is already involved in "onsite solar, emergency generation and cogeneration" via its Constellation subsidiary. In fact, it has apparently already achieved its goal of eliminating the equivalent of its 2001 carbon footprint.  However, the press release hints that something else might have attracted them to this deal.

Consider all the changes in store for the power grid. Baseload coal power is declining due to the combination of economic forces and strong emissions regulations such as the EPA's Clean Power Plan. Even some nuclear power plants, which have been the workhorses of the fleet for the last several decades, are facing premature retirement for non-operational reasons. At the same time, grid operators must integrate steadily growing proportions of intermittent renewable energy (wind and solar), along with increasingly sophisticated tools like demand response and energy storage. If any of this goes wrong, electric reliability will likely suffer.

From that perspective, Exelon's small--for them--step into DG also looks like a bet on the future value of reliability--"non-intermittent...reliable, resilient and distributed power." That's a bet even an old oil trader can understand: Uncertainty creates volatility, and volatility creates opportunities. I will be very interested to see how this turns out. 

A different version of this posting was previously published on the website of Pacific Energy Development Corporation.